皆算、暗算は得意ですか?
すっかりエクセルやPC・スマホの台頭で自分の頭で計算することはなくなってきているのではないでしょうか。
私も小学生の頃、そろばん教室に通っていたので暗算もやりましたが、今となっては買い物の時などパッと昔のように頭が回らず、スマホの電卓アプリを使ってしまいます。
正確な数字を計算する必要はなくて、だいたいこれぐらいだろうなとか、提示された数字に明らかな間違いがないかわかればいいレベルなんですが、そのあたりがスッと出てこないとお話の途中でも気になって気になって仕方なくなったりしませんか?
今日は、「おっ!!」と目から鱗の暗算法に出会ったのでご紹介します。(マインドフルネスは全く関係ないですよ)
その名は”おみやげ算”
”おみやげ算”とは二桁の数字の二乗を計算するときに有効な手段である。
例えば、25 × 25の計算をする時、皆さんはどういう感じで計算しますか?
学校で習った方法だと、二つに分けて計算して合計するパターンになるかと思います。
⑴25 × 20 = 500
⑵25 × 5 = 125
⑴ + ⑵ = 625
これを”おみやげ算”を使うとこういう計算の手順になります。
⑴25 × 25の片方の下一桁5を、もう片方にあみやげとして渡します。そして、計算する。
30 × 20 = 600
⑵おみやげとして渡したの5の二乗を計算する。
5 × 5 = 25
⑴と⑵を合計する。
600 + 25 = 625
驚きでしょ?!
わかりやすいですよね。同じ2回の計算でも簡単な計算になるんで、計算ミスの可能性も減らせるので、自信を持って答えを導き出せますね。
二乗の計算だけじゃない”超おみやげ算”
日常生活で二乗の計算なんてやることないよ!?って思われた方も多数いらっしゃるでしょう。
私も二乗の計算って脳トレ系のゲームでしか最近見たことなかったんでわかります。
より日常で使える二桁の掛け算(19 × 19までに限る)の方法を”超おみやげ算”と言います。計算方法は下記の通り。
⑴16 × 19の片方の下一桁9を、もう片方にあみやげとして渡します。そして、計算する。
25 × 10 = 250
⑵それぞれの一の位の6と9を計算する。
6 × 9 = 54
⑴⑵を合計する。
250 + 54 = 304
楽でしょ?!
小さい時に算盤やってた人はちゃんと計算すればすぐできると思いますけど、そうじゃない人や私のようにすっかり文明の利器に寄りかかっている人たちからすると驚きですよ。一番のツボは、⑴の計算の時に一の位が必ず0になるようになっていること。
これだけで計算の楽さが全然違います。
昔、インド式計算法ってなかったっけ??
あれは10年近く前でしょうか。
”インド式計算法”って一世を風靡しましたよね?
私は乗っからなかったんで、今回せっかくなので少し調べてみたんですけどサッパリ理解出来なかったです。パッと理解できないなら、すぐに日常生活に役立つとは思えないですし。
義務教育の時のように、毎日なんらかの計算をする機会があれば定着するんでしょうけど、今更全く違う方法を身につけるまでやり込む気になれないですよね。
そして、少し調べてわかったことは、「19 × 19」まで暗記する必要があるようです。
いや、それはもう無理でしょ?!
今更、電車の中で単語帳みたいにして覚えるわけにもいかないです。
そもそも言ってしまえば、二桁 × 二桁の計算も普段そんなにないですよ。
まとめ
今回はあまりにも目から鱗だったので、”おみやげ算”という暗算方法をご紹介しました。
”超おみやげ算”の方は、制限があるが二乗の計算を結構やる機会があります!という方には素晴らしい方法ではないでしょうか。
ビジネスで差がつく計算力の鍛え方 「アイツは数字に強い」と言われる34のテクニック [ 小杉拓也 ]
このようにちょっとしたテクニックを知っているだけで雲泥の差が出る時がある。
電卓を探そうとして見つからなかったり、せっかく見つかってもアタフタして打ち損じで計算できなかったり。そういう時ありますよね。
また、自分がお客として話を聞いている時に、今のはどういう計算ですか?って聞いた時に、計算方法の説明されなかったら不安になりますよね?
そもそもその数字をベースにこのまま会話を進めていいの?!ってなってしまいます。
(たまにほんまに変な計算をしている人いますからね。)
というわけで、ちょっと知っているとお得な必殺技のご紹介でした。
これを使おうと思って覚えておかないと、いざという時に役立ちませんからね。